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Abstract
Emerging non-volatile main memory (NVMM) unlocks
the performance potential of applications by storing per-
sistent data in the main memory. Such applications
require a lightweight persistent transactional memory
(PTM) system, instead of a heavyweight filesystem or
database, to have fast access to data. In a PTM system,
the memory usage, both capacity and bandwidth, plays a
key role in dictating performance and efficiency. Exist-
ing memory management mechanisms for PTMs gener-
ate high memory fragmentation, high write traffic and a
large number of persist barriers, since data is first written
to a log and then to the main data store.

In this paper, we present a log-structured NVMM sys-
tem that not only maintains NVMM in a compact manner
but also reduces the write traffic and the number of per-
sist barriers needed for executing transactions. All data
allocations and modifications are appended to the log
which becomes the location of the data. Further, we ad-
dress a unique challenge of log-structured memory man-
agement by designing a tree-based address translation
mechanism where access granularities are flexible and
different from allocation granularities. Our results show
that the new system enjoys up to 89.9% higher transac-
tion throughput and up to 82.8% lower write traffic than
a traditional PTM system.

1 Introduction
Emerging byte-addressable non-volatile main memory
(NVMM), e.g., 3D XPoint [23], PCM [43, 27], STT-
RAM [3, 25] and ReRAM [2], enables persistent data
to be stored in main memory. This leads to an archi-
tecture where applications directly access persistent data
via CPU load/store instructions [50, 10, 49, 37, 44, 18,
41, 55]. Such an architecture lowers latency not only due
to the significantly higher performance of NVMM com-
pared to SSDs, but also due to the fact that the system
software is removed from the critical path of persistent-
data accesses [36, 13, 9, 55]. Applications that use
NVMM typically employ a lightweight persistent trans-
actional memory (PTM) system [50, 10, 22, 56, 34, 9,
18, 24], instead of a traditional file system or database,
to have fast access to NVMM data.

Memory usage, both capacity and bandwidth, is cru-
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cial for the performance and efficiency of PTM sys-
tems. DRAM-style memory management used by ex-
isting PTM systems to manage NVMM leads to a high
amount of fragmentation that can cause wastage of over
50% space [46]. Moreover, existing transactional mecha-
nisms used by PTM systems lead to excessive write traf-
fic as they require all new data to be written twice – once
to the log, and once to the main data region, referred to
as home space of data. The redundant writes not only
increase memory bandwidth usage but also wear out the
NVMM device faster. Further, these writes need to be
persisted using expensive barriers in a synchronous man-
ner which increase the latency of transactions.

In this paper, we present a new log-structured mem-
ory management model for NVMM systems. This model
eliminates dichotomy of NVMM data in the home space
and a separate log area. We unify the home space and
the log area by organizing the whole NVMM solely in
the form of logs, which also act as the home space.
Our design effectively reduces fragmentation, incorpo-
rates wear-leveling, and optimizes for the write traffic
and persist barriers. Fragmentation is minimal because
memory allocation becomes an immediate append to the
end of a log, and freed up areas can be moved and con-
solidated [45, 46] to further reduce fragmentation. Be-
sides, NVMM bandwidth consumption, write wear and
the number of persist barriers are reduced because there
is no need to write data separately to both the traditional
home space and the log.

Applications using our system view NVMM in the
same way as the traditional systems, but a runtime ad-
dress mapping mechanism is employed to translate ap-
plication addresses to log offsets. We refer to the appli-
cations’ view of NVMM as the virtual home space. Such
address mappings are fully cached in DRAM, and can be
consistently restored from the log after a crash.

Another key contribution of this work is the design and
implementation of a practical tree data structure for the
home to log address mapping in our system. While log-
structured approaches have been explored in different do-
mains, such as filesystems [45, 52], databases [48, 46, 4]
and object stores [31, 46], log-structured NVMM faces a
unique challenge of address mapping overhead. Unlike
existing log-structured systems, we need to present a flat
address space where allocation granularities are not the
same as access granularities.

A data structure that can support creation of mappings
at access time as opposed to allocation time is required.
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This is because memory stores can target arbitrary ad-
dresses and lengths that may not be indicated at alloca-
tion time. We show in this paper that a tree structure is
well suited for such a requirement. Meanwhile, NVMM
is orders of magnitude faster than SSDs, so that address
mapping performance could become a bottleneck if not
designed well. For SSDs, data access latencies dwarf ad-
dress translation overhead, but that is not the case with
NVMM. Hence, we revisit the address mapping issue of
log-structured designs for NVMM systems.

A naive tree data structure requires O(log n) opera-
tions per memory access which can be prohibitive when
n is large. Moreover, trees require expensive balanc-
ing operations to achieve such time complexity. We de-
sign key optimizations to a tree structure for log-structure
NVMM to reduce address translation overhead: (1) Two-
layer mapping. The whole home space is first divided
into static fixed-length partitions so that data can be
routed to such a partition (or more partitions) in O(1)
time. In this way, the average number of nodes in a
partition-local tree is much smaller than a huge tree cov-
ering the whole address space. (2) Skip-list trees. We use
the skip list [42] for second-layer trees. The main ben-
efit is that they probabilistically balance at insert time
to avoid rebalancing operations, which are costly and
largely impair parallelism. (3) Group update. If con-
secutive writes target contiguous addresses, we merge
them and update the tree only once. (4) Tree node cache.
We observe that memory accesses have locality so that
caching recently visited tree nodes can avoid many full
tree lookup paths starting from the root node.

We also present mechanisms to control the overhead
of log cleaning needed for compaction, and speed up the
recovery process. NVMM logs can be processed in par-
allel on recovery, which helps rebuild address mappings
for 10 GB NVMM in 3.0 seconds.

Overall, we make the following contributions:
• A new log-structured design to eliminate the di-

chotomy between the data and the transactional log for
PTMs. We identify the crucial difference between ex-
isting log-structured systems and the kind needed for
NVMMs where access granularities are not identical
to allocation granularities.

• A novel tree-based address mapping mechanism that
meets the above requirement. To the best of our
knowledge, we are the first to demonstrate the prac-
ticality of employing such a well optimized tree struc-
ture in a log-structured NVMM system.

• An implementation of the above ideas by modify-
ing TinySTM [16]. Under various workloads, log-
structured NVMM achieves 55.3% more throughput
and 72.2% less write wear than a traditional PTM on
average, when the usage of NVMM is over 90% and
the log cleaning overhead takes place.

2 Background and Motivation
Current PTMs typically derive their memory manage-
ment design from that for DRAM. Data is referenced us-
ing load and store instructions on native virtual memory
offsets, and memory allocations are managed by an al-
locator such as Hoard [6] adopted by Mnemosyne [50],
and jemalloc [15] adopted by Intel’s NVML [22] and Or-
acle’s NVM Direct [39]. However, the following prob-
lems arise in such systems.
Fragmentation of NVMM space. There are two
sources of fragmentation in a traditional memory alloca-
tor [17, 15]. First is internal fragmentation. Take Intel’s
NVML [22] for example. It aligns any NVMM alloca-
tion size to 64 B. If 65 B of NVMM is requested, NVML
shall effectively allocate 128 B, including 63 B internal
fragmentation. Second is external fragmentation. Sup-
pose a 64-B block is freed but has surrounding blocks in
use, then it cannot serve any request beyond 64 B. Exter-
nal fragmentation is severe if allocation sizes vary [38].
Experiments [46] have demonstrated that fragmentation
can take over 50% of all memory under management.
This issue is more critical for NVMM because it holds
data for a long term even across reboots.

Garbage collection, in a managed language runtime
such as Java or C#, is capable of changing allocated ad-
dresses. It can reduce fragmentation but involves ob-
ject reference analysis and process pauses [20]. Since
NVMM is slower and larger than DRAM, the cost of ob-
ject reference analysis and pauses will be prohibitive.

In contrast, a log-structured approach easily avoids
internal fragmentation because new allocation is com-
pactly appended to the log end. It absorbs external frag-
mentation by moving allocated data and consolidating
free spaces without the need to pause the process.
Excessive NVMM write traffic and barriers. NVMM
has limitations in bandwidth and endurance [28] (104 −
109 P/E cycles compared to DRAM’s 1015 cycles). How-
ever, to maintain crash consistency, all NVMM writes
must first be logged by PTM at a separate location. Such
logging entails redundant NVMM write traffic and extra
wear, compared to naive writing.

Figure 1 shows how a log-structured approach can re-
duce the write traffic and also the number of flushes
for a representative transaction. By the pseudo func-
tion map address, all addresses within the area are
mapped to a new location in the log. Such mapping only
involves DRAM writes which are fast and incur no wear
on NVMM. This approach saves extra NVMM writes
and costly CPU flushes/persist barriers.

Furthermore, the traditional PTM systems use the
NVMM bus less efficiently than the log-structured ap-
proach, because updates to the home space tend to be
sparse and hence have poor cacheline coverage . This
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void tx_update_title(employee emp, title new_title) {
tx_begin {

emp.title = new_title;
} tx_end;

}

Transaction system behaviors:                   logging PTM vs. log-structured NVMM

Pseudo source code:

in_log_title = append_to_undo_log(emp.title);
flush(in_log_title);
emp.title = new_title; // extra NVMM write
flush(emp.title); // one more flush

in_log_title = append_to_nvmm_log(new_title);
flush(in_log_title);
map_address(emp->title, in_log_title);

Figure 1: In a traditional PTM, objects have to be first logged and the log has to be persisted in NVM using a CPU flush
before the transaction can edit the objects. Another CPU flush is needed after the edits complete. In log-structured
NVMM, one flush is enough. Since the log entry becomes the new location of data, the extra write is eliminated.

leads to more bus bandwidth consumption when com-
pared to sequentially appending them to the log.

A unique challenge in log-structured NVMM. The
challenge of tree-based address mapping is a unique one
for log-structured NVMM. It has not been seen in exist-
ing log-structured systems. Those systems manage data
in a form of well-defined elements such as blocks in a
filesystem [45, 52], tuples in a database [48, 4] or ob-
jects in a key-value store [31, 46], where allocation gran-
ularities are the same as access granularities. Such well
defined access granularities facilitate a high performance
design. For instance, an in-memory hash table can be
employed to map elements to their locations in the log,
which offers O(1) lookup. In addition, a bloom filter can
be applied to improve mapping/index performance in the
case that a slow search path exists (e.g., log-structured
merge trees [48]).

Unfortunately, such a convenience is missing for
NVMM systems. There is no concept of data elements
or IDs in bare memory. It is hard to define one in sys-
tems that employ a flat address space where accesses
can be targeted at any offset with any length. Restrct-
ing block/object-granular accesses lacks flexibility and
incurs high costs [51, 16]. Simply setting a fixed and
small block size (e.g., tens of bytes) is not viable ei-
ther, because the metadata to maintain such blocks can
be prohibitively large [30, 19]. Furthermore, NVMM
is orders of magnitude faster than SSDs, so the address
mapping overhead, though traditionally negligible, now
stands out. Therefore, we design a more flexible but
highly performant scheme, which fragments the address
space on demand based on the executed store instruc-
tions rather than defining the granularity statically or at
data allocation time.

3 Design
This section describes the design of log-structured
NVMM (LSNVMM), a user-space library for accessing
and managing NVMM.

3.1 Overview
The high-level architecture of LSNVMM is shown in
Figure 2. From bottom up, LSNVMM uses DAX [32]
through a filesystem that allows direct access to physical
NVMM device via a memory map. In LSNVMM, the
NVMM region is organized into logs (§3.3), and an ad-
dress mapping mechanism translates virtual home-space
addresses to log positions (§3.2). Applications access
the NVMM region via our library that interposes all the
memory accesses to the region using the address map-
ping mechanism.

Applications

Transactional memory 
(concurrency control)

Lock-based con-
currency control

Log-structured NVMM

Filesystem

OS

NVMM

(Direct access for files)

Figure 2: The architecture and system stack of log-
structured NVMM.

Interface. Our library offers two main functionalities.
One is memory management, with semantics similar to
that of C library: pmalloc and pfree for NVMM al-
location and deallocation, respectively1. The other func-
tionality of our library is the transaction abstraction that
provides crash-consistent data persistence. All NVMM
data operations are performed via this abstraction, re-
ferred to as an NVMM transaction. Within an NVMM
transaction, memory loads and stores are instrumented
at compile time and treated differently: all stores of
the transaction are persisted atomically to the log on
NVMM; every load address has to be translated to a

1Note that our current design assumes that the persistent region is
fixed to a static base address [50, 35]. Doing so enables use of native
pointers that remain valid across crashes and reboots. However, special
pointer types [10] can be supported easily.
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proper position in the log to access the data. Concur-
rency control of data operations is left to an upper-layer
transactional memory (TM) system. It is also possible to
use explicit locks for such concurrency control.
Recovery. To achieve efficient address translation, ad-
dress mappings are stored in DRAM. On a normal pro-
cess shutdown, we compact the in-DRAM address map-
pings and other necessary metadata, and flush them to
NVMM, so that they can be quickly restored when the
process restarts. However, if a system crash happens,
the DRAM data is lost. Therefore, we have to rebuild
the in-DRAM data structures. To speed up this process,
the recovery is performed using thread-level parallelism
(more details in §4.5).

3.2 Address Mapping
Using our address mapping mechanism, applications in-
teract with NVMM in much the same way as DRAM to
build data structures. They need not change their mem-
ory access model that uses flexible regular virtual mem-
ory addresses and pointers. However, they have to adopt
the transaction interface to make atomic changes to the
data structures similar to existing PTM systems. We re-
fer to addresses in applications’ view as home addresses,
and log positions that are hidden from applications as log
addresses.

We use a tree structure to maintain mappings from
home addresses to log addresses. Logically, one node
in the tree holds a pair {home address, length} denoting
an area in the home space, and the log address that the
area is mapped to. The rationale for using a tree instead
of a hash table is that, in flat address space based sys-
tems, allocation granularities are not identical to access
granularities. For instance, an application may allocate
a large structure using pmalloc but only read/write a
small portion of that within transactions. Therefore, we
need address translation support for arbitrary accesses
that are not aligned with allocated objects.

The efficiency of address mapping is crucial for our
system. The latency of traditional log-structured sys-
tems is dominated by the disk/SSD latency of data ac-
cesses. Also, the granularity of such data accesses is
large (e.g., the block size of 512 B) and the frequency
is low. However, in our case, NVMM is much faster and
more frequently accessed in granularities as small as a
few bytes. Hence, it warrants careful design of the ad-
dress mapping. The time complexity of an operation on
the tree is O(log n). We use several optimizations to re-
duce the practical cost of such an operation. Figure 3 de-
picts main data structures to support these optimizations
as described below.
Two layers of mapping. The average cost of a tree op-
eration is proportional to the tree height, so our first opti-
mization targets at largely reducing the tree height. This
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Figure 3: The spaces and address mappings in
LSNVMM. Access to 0© is a hit in the tree node cache,
and access to 1© is a miss. Both examples are single ad-
dresses, but a tree node contains a range of addresses and
a range lookup across nodes is supported as well.

can be realized if a huge tree is split into numerous small
ones. We do so by having two layers of address mapping.
In the first layer, we divide the home space into fixed-
length partitions, so that a home address can be simply
divided by the partition length, costing as low as one
CPU cycle, to determine which partition the address lo-
cates in. In the second layer, each partition holds a small
tree for further address lookup (Figure 3). Our approach
can reduce the tree height by several times. With real
world workloads, this optimization improves transaction
throughput by 39.6% on average (§5.2).
Group update. Opportunistically merging tree nodes
is another way to further reduce the number of nodes
and thus the height of a tree. When two sibling nodes
contain contiguous home addresses and map to contigu-
ous log addresses, they can be merged. Spatially local
writes within a transaction can exploit this optimization.
Within each NVMM transaction, we first buffer all writes
in DRAM, and combine those with contiguous home ad-
dresses on transaction commit. A group of combined
writes is appended to the log and the address mapping
tree is updated the minimal number of times. Overall,
this optimization realizes 42.3% transaction throughput
improvement according to our evaluation (§5.2).
Skip lists and locking. We choose the skip list [42], a
probabilistic alternative to balanced trees, as our tree data
structure (Figure 3). The main reason for our choice is
that, while supporting O(log n) operations on average,
the skip list does not need a complex rebalancing opera-
tion as a strictly balanced tree such as B-tree does.

Such an optimization is crucial for multi-threaded sce-
narios. A typical balanced tree requires a readers-writer
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lock to protect concurrent operations2. Lock contention
due to heavy reads and writes can deteriorate throughput
of such systems. In contrast, by leveraging skip lists, we
get rid of locking for read-only operations. Particularly,
an update of the skip list involves only simple pointer
manipulations on singly linked lists. Taking advantage of
CPU’s atomic word write (aligned 64 bits for x86), such
an update is implemented in a way that is atomic to lock-
free read-only operations. By avoiding such lock con-
tention, we can see 48.9% higher transaction throughput
with four threads in our experiments (§5.2).
Tree node caches. We equip each working thread with a
thread-local cache that stores recently accessed home ad-
dresses and pointers to their nodes in the trees (Figure 3).
When the program accesses an address, our library first
searches the cache. If it is hit, the library directly gets
the pointer to the tree node that contains the requested
address mapping; otherwise, a full tree lookup is neces-
sary and the resulting node is added to the cache. Such a
caching mechanism is effective because of inherent tem-
poral and spatial locality among memory accesses. As
our experiments show, some memory areas are hot and
frequently accessed, and memory accesses tend to clus-
ter within 64 B areas. The hit ratio is 92.2% on average,
and introduction of tree node caches leads to 30.1% in-
crease in transaction throughput on average (§5.2).

We tweak a regular hash table design to meet a special
requirement of our tree node cache. That is, once a node
is cached, addresses within its mapped area tend to be a
cache hit. A plain hash table does not give such a feature
as cached addresses are randomly distributed. For exam-
ple, a node for a 64 B area starting at 0x1000 is cached.
If an access to the address 0x1008 falls into a different
bucket, it would lose the chance to be checked with this
node and hence be a miss. To solve the issue, we deliber-
ately increase certain collision by using set-associativity.
Based on the observation above, we try to route addresses
within a 64 B scope to the same bucket so that nearby ad-
dresses can be checked with chained tree nodes that may
cover them. To realize that, we pick high-order bits of
an address as its hash value. Consequently, sequential
addresses have a good chance of falling into one bucket.

3.3 NVMM Organization
The goal of our NVMM organization is to allow each
thread to allocate NVMM with minimal overhead. To-
wards that end, the NVMM region is physically orga-
nized into static chunks, atop which we build logical logs.
Multiple chunks can be linked into a list. We choose a
relatively small chunk size (e.g., 32 KB), because typical
NVMM writes are small; moreover, an individual chunk

2There are carefully crafted lock-free balanced tree designs [8, 14]
but they involve extra complexity and overhead. In contrast, our ap-
proach is simple and performs well in practice.

with a small size can be more quickly cleaned and recy-
cled in an incremental manner.

Chunks help reduce contention among the multiple
threads. We maintain a global pool of free chunks, and
each thread has its own list(s) of chunks in use. A thread
is allowed to buffer some free chunks when it requests
one from the global pool, or after it obtains them from
local log cleaning. This can avoid frequent manipulation
of the global pool and its lock contention.

3.4 Log Structure
A log in the NVMM region consists of a list of chunks.
Multiple logs coexist in our system. It is different from
a conventional disk-based log-structure system which
tends to have a single log per disk because the disk has
only one disk header and sequential access is the first pri-
ority. With fast random access instead, NVMM warrants
a different design, which favors thread-level parallelism
by using thread-local logs. Furthermore, each thread has
multiple logs to improve log cleaning efficiency, as we
describe later in this section. LSNVMM employs a num-
ber of log cleaners to collect free space accumulated in
chunks. The free spaces come from pfree operations
or old data that has been updated. We use a background
thread to run a cleaner.
Log entry. A log entry holds two kinds of metadata.
First, a mapping for a modified or allocated memory
area. When a log cleaner scans the chunk, it checks live-
ness of each log entry by looking up the home address
from the address mapping tree. Second, a tombstone for
each freed area. A tombstone is never accessed within
transactions, but used on the recovery path to filter out
freed areas. Atop log entries, we build transactions. A
transaction consists of all log entries that it produces, by
memory stores and (de)allocations.
Cleaning policy. The log cleaner moves sparse live data
from several chunks to a new chunk in a compact man-
ner, and recycles the cleaned chunks. Chunks with the
amount of live data below a threshold (20% by default in
our setup) are selected for cleaning.

We design three optimizations for log cleaning.
(1) Fast cleaning: When all log entries in a chunk are
stale, the chunk can be safely reclaimed. This can be
done fast because we only need to modify a few list
pointers to move the chunk to a free chunk list, with-
out data copying. (2) Separate logs: We observe that
memory stores always have better locality than memory
allocations. It implies that mixing them in one log may
increase the log cleaning cost and decrease the chance
of fast cleaning. So we design separate logs for each
thread, the update log serving memory stores, the allo-
cation log serving memory allocations and the dealloca-
tion log storing only tombstones. (3) Parallel cleaning:
In order to have sufficient log cleaning throughput, we
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perform log cleaning with multiple background threads
for different chunks.

4 Implementation
This section describes the implementation of LSNVMM.
We start with the home space management mechanisms
in §4.1, then elaborate log space management in §4.2 and
address mapping between the two spaces in §4.3. Log
cleaning and recovery procedures are described in §4.4
and §4.5, respectively.

4.1 Home Space Management
Memory allocation and access are two main functional-
ities of home space management. We draw upon exist-
ing implementation of transactional memory systems to
realize such functionalities3. But we add persistence to
transactional memory: (1) necessary allocation metadata
is stored in NVMM so that the home address space can
be rebuilt after a crash, and (2) committed transactions
are stored in NVMM so that data updates are persistent.
Next, we detail the underlying mechanisms.
Home space allocation. Considering that the 64-bit
home address space is virtual and sufficiently large, frag-
mentation is not a severe issue there. Thus, we choose
current memory allocators Hoard [6] and dlmalloc [26]
to implement home space allocation. Hoard serves mem-
ory allocations smaller than 8 KB, while dlmalloc deals
with larger ones [50].

The state of both allocators is consistently rebuilt upon
crashes using metdata stored with data and therefore,
no runtime effort is spent in ensuring persistence of the
state. Take Hoard for example. It organizes home space
into superblocks, and each superblock serves allocation
requests of a certain size (e.g., a 8 KB superblock con-
tains an array of 16 B allocations). The metadata of
superblocks (location and allocation size) is stored in
NVMM. With such information, we simply rely on the
logs to infer allocation state after crashes. Therefore,
home-space allocations do not incur any persistent op-
erations.
Transactional memory. Applications’ access to home-
space data is protected by transactions. Intel STM com-
piler [1] is used to instrument regular C/C++ code with
transaction annotations. Programmers place the keyword
tm atomic and a pair of braces to specify the scope

of a transaction. The compiler automatically generates
calls into our transaction system when a transaction be-
gins, issues memory loads and stores, and commits.

We employ TinySTM [16], a lightweight software
transactional memory implementation, to intercept these
calls and implement concurrency control of transactions.

3LSNVMM is not bound to transactional memory. We choose the
interface because it is easy to use for applications.

Each transaction holds a temporary private write set con-
taining all written values and their addresses, which are
not visible to concurrent transactions. When a transac-
tion allocates memory, the system quickly allocates the
requested size in the home space, and returns its home
address. After that, all writes to the newly allocated
space are buffered in the volatile write set.

Allocated memory, writes to old data are all persisted
into logs when the transaction is committed. Likewise,
deallocations are also logged to ensure that memory does
not leak. A TinySTM transaction may receive mem-
ory writes to both volatile regions and NVMM. The
LSNVMM library takes the responsibility to filter out
writes to volatile memory and persist those to NVMM in
a crash consistent manner when the transaction is com-
mitted. The group update optimization is performed to
merge NVMM writes that have contiguous home ad-
dresses. Afterwards, a single log entry is generated for
each NVMM write and flushed to logs in NVMM. Then
each NVMM write obtains its log address, and the library
inserts into global address mapping trees the mappings
from home addresses to log addresses.

4.2 Log Space Management
From top down, the hierarchy of log storage is as follows:
(1) a log is stored in a number of fixed-length chunks;
(2) within one or more chunks, transactions that consti-
tute the log are stored in transaction blocks; (3) within
a transaction block, memory allocations and updates of
the transaction are stored in log entries. We now describe
these components in a bottom up order.
Log entry. Each log entry has a header and data. The
header consists of (1) a 47-bit home address to record
the start home address of the data, (2) one bit to denote
whether the entry is a tombstone, and (3) a 16-bit size to
record the data length. 47 bits are enough to hold a home
address because we record the offset of the address in the
NVMM region. Immediately after the header is the data
whose location is its log address. This entry structure is
used for both update and allocation logs.
Transaction block. A group of log entries belonging to
a transaction make the payload of a transaction block. A
preamble contains the following fields: (1) A 64-bit ver-
sion number to record the commit time of the transaction.
In our implementation, it is the monotonically increas-
ing, globally unique timestamp generated by TinySTM
for each transaction4. (2) A 48-bit peer pointer that
points to another transaction block (e.g., in a different
chunk as the current chunk is filled up), or in an allo-
cation log if the current log is an update log, or vice
versa. As a result, all blocks of a transaction form a

4It is an optimization to reuse the timestamp, but LSNVMM is not
necessarily bound to any TM implementation. We can also simply use
a global atomic counter to generate the version number.
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cyclic singly-linked list. (3) A 16-bit entry number to
record the number of log entries in the current transac-
tion block. If the number is not enough to count all en-
tries of a transaction, more block(s) can be linked to the
current block. (4) A 32-bit checksum using CRC32 error-
detecting code, which is calculated against the whole
transaction block.

Since a logical transaction may contain multiple trans-
action blocks across both update and allocation logs,
consistency among the blocks becomes an issue. We
have to handle the issue in two cases. The first case is
when a crash interrupts a transaction commit. LSNVMM
can detect this case by checking the checksum of each
transaction block on recovery, and discard the transac-
tion if any of its block is invalid or lost. The second case
is when a transaction block is moved to another chunk
due to log cleaning. As a result, peer pointers referenc-
ing moved blocks are no longer valid. However, such
inconsistency brings no problem as long as the contain-
ing transactions are safely committed, because the peer
pointers are only used for detecting uncommitted trans-
actions as in the first case. Therefore, we only need to
divert log cleaning from log ends that contain uncom-
mitted transactions.
Chunk. The payload of a chunk is a sequence of trans-
action blocks that make part of a log. Chunks are doubly
linked by their headers. Besides, the header holds a flag
to denote whether the chunk belongs to an update log or
an allocation log. If a transaction block contains a log en-
try larger than the remaining space of a chunk, the entry
can be split into more, and stored in linked peer blocks
in other chunks.

4.3 Skip List
An address mapping tree is implemented as a concurrent
skip list. By using insertion as an example, we show how
our skip list operates in a concurrent manner. In a skip
list, insertion of a node involves inserting the node to a
number of levels. For each level, the insertion is identi-
cal to that of a singly linked list, which can be atomically
realized by feat of atomic pointer updates. We do inser-
tion from the bottom level up. Once the node is inserted
to the bottom level, the insertion is effective. Inserting
to upper levels only influences lookup performance. So,
the insertion is logically atomic to concurrent reads.

While reads are lock-free, any tree structure update
(e.g., insert or delete) has to hold a lock controlling the
whole tree, because concurrent updates may corrupt each
other. But we can still maintain high update concurrency,
thanks to the large number of such trees in our design.

The tree node cache also needs a careful concurrency
control. We have to check if the hit node still holds the
requested home address, because it is possible the node
has been removed and recycled. Accordingly, we check

the home address of a node twice – before and after read-
ing the log address of the node. If both checks match, the
log address must be valid.

4.4 Log Cleaning
When memory utilization is beyond a threshold, a few
background cleaner threads begin to work, in parallel
with transaction threads. Cleaning steps are as follows:
(1) A set of victim chunks are identified according to the
policy in §3.3. For each victim chunk, a scan of all its
log entries is performed to determine liveness of the data
in each entry by checking its latest version in the address
mapping tree, vt. If vt is higher than the current transac-
tion version, the entry is discarded. (2) For a transaction
block that has live entries left, the preamble is recalcu-
lated (entry number and checksum), and the entire block
appended to a new chunk. (3) For the moved transac-
tion block, a quasi TinySTM transaction is run to up-
date global mappings with the new log addresses of the
live entries. The quasi transaction is just for enforcing
concurrency control. (4) After all transaction blocks are
moved out of a victim chunk, the chunk is reclaimed by
adding it to the global free chunk pool.

4.5 Recovery
Our recovery works in two phases to maximize thread
parallelism in a manner similar to map-reduce. In the
first phase, we dispatch all log chunks to the recovery
threads for parallel processing. The main task of each
thread is to scan the assigned chunks and group valid
log entries by the partition of their home addresses. Af-
ter this phase, each thread holds an array indexed by the
home partition, and each element of the array has a list of
log entries belonging to the partition. Note that this tem-
porary log entry structure only contains pointers to data
in NVMM and necessary metadata (version number).

In the second phase, each recovery thread takes charge
of different home partitions, and the task is to replay log
entries belonging to the partitions. To do so, the above
lists of log entries are shuffled among threads, so that
each thread holds the lists whose partitions are in the
charge of the thread. Then, for each partition, the sin-
gle thread in charge sorts all log entries of the partition
by their home address and version number, then pick up
entries with latest versions and insert their address map-
pings to the global address mapping tree for that parti-
tion. The approach, similar to map-reduce, avoids most
thread contention.

5 Evaluation
To evaluate the performance of log-structure NVMM, we
answer three questions as follows.
• How effective are the individual optimizations we de-

sign for LSNVMM? (§5.2)
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• How does LSNVMM perform against traditional PTM
systems? (§5.3)

• What are the costs of log cleaning, recovery, and
DRAM footprint? (§5.4)

5.1 Experiment Setup
All the experiments are performed on a computer with 8-
core Intel Xeon CPU E5-2637 v3 (3.5 GHz) and 64 GB
DRAM, running 64-bit Linux kernel version 4.2.3. All
results are average of five runs.
NVM simulation. As real NVMM products are not
available yet, we use a simulation method akin to that
in Mnemosyne [50]. We focus on effects of slow
NVMM writes instead of reads, as many prior works
do [35, 9, 18, 40], because the read latency of NVMM
is similar to DRAM and most memory reads are effec-
tively served by CPU caches. For a standalone NVMM
write required to be immediately persisted, we introduce
an extra latency. For sequential NVMM writes that are
executed together, we consider both write latency and
bandwidth of NVMM. The added delay is the max of
the above write latency and total write size/NVMM band-
width. By default, we set the write latency to 500 ns and
the sustainable write bandwidth to 1 GB/s. We imple-
ment any delay by a loop reading the CPU timestamp
counter (TSC) until required time has elapsed.
Benchmarks. We run five transactional benchmarks
atop our systems for evaluation. The benchmarks cover
both commonly used data structures and a real applica-
tion: SPS randomly swaps elements in a large array; RB-
Tree, B+Tree and HashTable (HT) perform operations on
a red-black tree, a B+ tree and a hash table, respectively;
KVStore runs a key-value store, Tokyo Cabinet [21].

For benchmarks BTree, B+Tree, HashTable and KV-
Store, we perform two workloads with different access
patterns: the insert workload (Ins) inserts a number of
key-value pairs, where keys are uniformly random; the
update workload (Upd) looks up a key, and deletes it if it
is found or inserts one otherwise. Keys of these pairs fol-
low the Zipfian distribution [5, 11] so that 90% updates
happen on 15% of the data. In all workloads, the value
size is 128 B by default unless otherwise noted. The total
number of elements/pairs in each benchmark is 10 mil-
lion, resulting in 2∼4 GB of logical NVMM footprint.

5.2 Effect of Optimizations
We demonstrate the effect of every optimization pro-
posed in §3.2. Comparing the library against itself pro-
vides valuable reference for other systems/implementa-
tions as such a control experiment reveals what benefit
each mechanism can bring.
Evaluated systems. We add optimizations one by one
to the address mapping structure, resulting in four imple-
mentations as below.

• Base is the baseline using a global, single skip list for
whole-space address mapping.

• 2L enhances Base with two-layer mapping. The home
space is divided into 4-KB partitions, and each parti-
tion is served by a skip list for address mapping.

• 2L-GU enhances 2L by performing group update.
• 2L-GU-C adds thread-local tree node caches with

FIFO replacement. Each cache is up to 4 M entries.
At last, we show results of LSNVMM, which is more

optimized for multiple threads. 2L-GU-C uses a readers-
writer lock per partition to protect a skip list from concur-
rency issues, while LSNVMM avoids locking for read-
only operations on a skip list. So far, all optimizations
are incorporated. In this experiment, we leave out log
cleaning which is orthogonal to these comparisons.
Results. Figure 4 shows performance of the four im-
plementations running the benchmarks. We make four
observations. (1) 2L constantly outperforms Base for
all workloads, by 39.6% on average, due to two-layer
mapping. (2) 2L-GU performs 42.3% better than 2L on
average, due to group update. (3) 2L-GU-C improves
transaction throughputs by 30.1% on average, compared
to 2L-GU, thanks to the tree node caches. (4) Over-
all, the above optimizations show strong performance in
various benchmarks/workloads, achieving up to 268.6%
(157.9% on average) performance improvement over the
baseline system.
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Figure 4: Transaction throughputs of the benchmarks
with different optimizations, in a single thread.

Particularly, to give direct evidence of the effect of
tree node caches, we plot average cache hit ratios un-
der different benchmarks in Figure 5. A tree node cache
achieves 92.2% hit ratio on average, which leads to sig-
nificant performance improvement in all benchmarks.
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Figure 5: Access hit ratios of tree node caches under dif-
ferent benchmarks/workloads.

At last, our multi-thread optimization is justified by
comparing 2L-GU-C and LSNVMM running the update
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workload of a multi-threaded version of the data struc-
ture benchmarks, as shown in Figure 6. Removing lock
overhead from read-only operations, LSNVMM achieves
good scalability, and provides 48.9% higher throughput
than 2L-GU-C when running four threads.
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Figure 6: Multi-threaded throughputs of data structure
benchmarks. “(n)” indicates the number of threads.

5.3 Comparison to Current Systems
Evaluated systems. We compare LSNVMM (LS) to
redo and undo logging in the traditional memory man-
agement. In the same way as LSNVMM, both log-
ging systems integrate with TinySTM [16]. Particu-
larly, Mnemosyne (Mnm) [50] is the combination of redo
logging and TinySTM with traditional memory man-
agement, and we also make Mnmsyn-Undo (MU) by
replacing the redo logging mechanism in Mnemosyne
with undo logging. Moreover, we deliberately introduce
cleaning overhead to LSNVMM in LSNVMM-Cleaning
(LSC), which triggers cleaning of chunks with over 50%
stale data every around 1000 transactions.
Performance. We show performance results of the
four PTM systems running the benchmarks. From
Figure 7 (a), we observe that LSNVMM outperforms
Mnemosyne and Mnmsyn-Undo by 37.3% and 66.1%
with one thread on average, respectively. Especially
for HashTable and SPS, LSNVMM achieves 89.6%
and 89.9% (118.2% and 125.9%) speedup beyond
Mnemosyne (Mnmsyn-Undo), respectively. These two
benchmarks turn out to issue less memory loads than oth-
ers. In contrast, LSNVMM does not perform well with
KVStore running the update workload, mainly because
it has intensive memory loads. As for scalability, Fig-
ure 7 (b) shows the performance of the PTM systems
running the benchmarks in four threads. We can see that
LSNVMM scales well. It performs 44.7% and 80.8%
better than Mnemosyne and Mnmsyn-Undo on average,
respectively. Finally, log cleaning incurs minimal over-
head in this setting. Compared to LSNVMM without log
cleaning, LSNVMM-Cleaning reduces the throughput of
benchmarks by 4.1% and 7.8%, with one thread and four
threads, respectively. More evaluation of log cleaning
follows in §5.4.1.

In conclusion, LSNVMM remarkably outperforms

logging PTMs even with log cleaning overhead, and
shows scalability with multiple threads. LSNVMM is
especially suitable for write-intensive workloads.
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Figure 7: Transaction throughputs of the benchmarks
with different memory management systems.
NVMM write traffic and wear. We calculate NVMM
write traffic, i.e., the cache line size multiplied by the
total number of cache lines written back to NVMM.
This metric reflects the NVMM bandwidth consump-
tion. Among the write traffic, only modified data actu-
ally wears NVMM [57, 12], we estimate NVMM wear
in terms of total dirty bytes ever written to NVMM. Fig-
ure 8 shows that part in breakdown of write traffic. We
make two observations. (1) LSNVMM saves 82.8% and
82.0% write traffic of Mnemosyne and Mnmsyn-Undo
on average, respectively. Besides the fact that redo/undo
logging logically writes twice what LSNVMM does, we
can clearly see the influence of cache line granularity.
As home-space updates in Mnemosyne and Mnmsyn-
Undo are typically sparse and fine-grained, they waste
lots of NVMM traffic on flushing entire cache lines.
(2) LSNVMM reduces dirty bytes by 80.1% and 65.1%
compared to Mnemosyne and Mnmsyn-Undo on aver-
age, respectively. Thanks to the group update technique,
LSNVMM merges a large number of sequential and re-
peated writes. On the contrary, Mnemosyne persists ev-
ery write of the transaction in the log, even if it can be
merged or coalesced with others.
NVMM fragmentation. In this experiment, we test
different memory allocators under three typical work-
loads [46] that emulate variation of data value sizes. All
workloads consist of two phases with different individ-
ual allocation sizes. W1 first allocates collectively 1 GB
in randomly 100 - 150 bytes, and then repeats so in ran-
domly 200 - 250 bytes. W2 is different with W1 only
in that it frees 90% of the memory allocated in the first

9



0
1000
2000
3000
4000
5000
6000
7000

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

W
ri

te
tr

af
fic

(b
yt

es
/tx

)
Dirty bytes
Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(a) The insert workload.

0
1000
2000
3000
4000
5000
6000
7000

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

W
ri

te
tr

af
fic

(b
yt

es
/tx

)

Dirty bytes
Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(b) The update workload.

Figure 8: NVMM write traffic and wear of different
memory management systems running the benchmarks
(in a single thread).

phase before it goes to the second phase. W3 has the
same behavior as W2 except that its individual alloca-
tion size in the first phase is random 1,000 - 2,000 bytes
and in the second phase random 1,500 - 2,500 bytes.

Figure 9 depicts the results. We make two obser-
vations. (1) Typical DRAM-oriented memory alloca-
tors hardly manage memory efficiently in these work-
loads. Mnemosyne (Hoard) produces 25.3% memory
fragmentation on average, and NVML (jemalloc) pro-
duces 35.0%. In contrast, LSNVMM keeps it as low as
4.5% by virtue of log cleaning. (2) The memory frag-
mentation of LSNVMM is inversely proportional to the
allocation size, because each allocation has its own meta-
data cost. For example, LSNVMM incurs 7.3% frag-
mentation in W1 but only 0.6% in W3.
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Figure 9: NVMM fragmentation ratios of LSNVMM
and two other representative traditional memory alloca-
tors, Hoard [6] adopted by Mnemosyne [50], and jemal-
loc [15] adopted by Intel’s NVML [22].

5.4 Log-Induced Costs
5.4.1 Log Cleaning

We first evaluate the effect of separate logs on fast clean-
ing (§3.4). Figure 10 depicts the amount of log data

that is reclaimed by fast cleaning as the number of up-
date operations increases. In the experiment, we firstly
insert 10 million elements to the corresponding bench-
marks. We make two observations from this figure. (1)
Beyond initial 10 million updates, the fast cleaning can
effectively clean around more than 200 MB memory per
million updates. (2) The separate log design can clean
more chunks than the baseline. Their gap is bigger in the
RBTree benchmark, because it has more clustered mem-
ory stores than HashTable so that a separate update log is
apt to fast cleaning.
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Figure 10: Fast cleaning performance with baseline
(“Base”) or separate logs (“Sep”) with a random 1 KB
update workload on HashTable or RBTree.

When all cleaning overhead walks in, Figure 11 shows
the resulting performance of the benchmark as well as
the throughput of the cleaner. In the experiment, we
preload B+Tree to occupy a certain fraction of NVMM,
and then run the update workload with four working
threads and two cleaning threads. We test two cases
where the value size is 128 B and 1 KB, respectively.
We draw a major conclusion from this figure: LSNVMM
does not lose much performance under high NVMM
pressure. The performance degradation due to cleaning
was 8% or less, even at 90% memory utilization.
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Figure 11: Transaction (“txn”) and cleaning (“cln”)
throughputs of the B+Tree benchmark with random key
distribution and different value sizes (128B vs. 1KB) as
a function of memory utilization.

5.4.2 Recovery

Figure 12 shows the required time to recover from
a 10 GB of logs in NVMM. We rebuild the whole
LSNVMM in multiple threads. We make two ob-
servations from this figure: (1) The recovery process
quickly speeds up with more threads. For 128 B values,
LSNVMM needs 19.2 seconds to recover in one thread,
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but only 3.0 seconds in eight threads. (2) The recov-
ery latency is inversely proportional to the data allocation
size, because the number of address mappings decreases
as the allocation size increases.
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Figure 12: Recovery time of 10-GB NVMM logs, with
different numbers of threads and different value sizes
(128B vs. 1KB).

5.4.3 DRAM footprint

We evaluate the DRAM footprints using the real appli-
cation KVStore under the insert workload with different
value sizes. Figure 13 illustrates the amount of DRAM
required. It is around 16.9% of NVMM when the value
size is as small as 128 B, and drops quickly as the value
size increases.
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Figure 13: DRAM footprint of the address mapping
structures and thread cache in KVStore for 1 GB NVMM
data as a function of the value size.

6 Related Work
Persistent memory systems. They can be classified
into three categories by their interfaces. One category
is PTM. For example, Mnemosyne [50], SoftWrAP [18]
and DudeTM [33] are redo logging based PTMs, while
NV-Heaps [10], NVML [22] and DCT [24] are undo log-
ging based ones. Our work is built on many PTM tech-
niques, but follows a different, log-structured way to ad-
dress the memory management issue.

The second category provides data structure inter-
faces, such as CDDS [49] and NV-Tree [53]. Their in-
terfaces to applications are not as flexible as transactions.
The third category is software transparent. WSP [37] and
ThyNVM [44] are two representatives. They either have
a strong assumption on hardware or involve advanced
hardware features. In contrast, LSNVMM is a general
solution and requires no customized hardware.

Memory allocators. Makalu [7] and nvm malloc [47]
are NVMM allocators that aim at collecting garbage in a
failure-safe manner. WAlloc [54] proposes a wear-aware
memory allocator to improve the wear leveling. These
works address other aspects of memory management,
while we focus on the memory fragmentation problem.

RAMCloud [46] shares the same goal as our work
to reduce memory fragmentation. It also uses a log-
structured approach. But it is a key-value store of well-
defined data objects, without the need for a tree-based ad-
dress mapping mechanism as in LSNVMM. LSNVMM
supports general transactions for arbitrary data.
Log-structured systems. The log-structure approach
was early designed in LFS [45], which buffers random
writes in DRAM and makes best use of sequential I/O of
hard disk drives. F2FS [29] proposes a well optimized
file system on flash storage devices, which adopts sep-
arate metadata and data logs, and uses adaptive logging
to avoid frequent garbage collection. It is similar to our
separate log design. NOVA [52] is a file system opti-
mized for hybrid memory systems, providing strong con-
sistency guarantees. It maintains independent logs for
each inode to improve scalability. Some databases [4]
implement log-structured data management, and take ad-
vantage of NVMM to simplify traditional DBMS. Over-
all, the log-structured approach is widely used in those
systems, but their designs hardly apply to LSNVMM
whose unique challenge is tree-based address translation
as discussed in §2.

7 Conclusion
The log-structured NVMM eliminates the dichotomy
between data home and data logs in current logging
PTMs. This solves the vital NVMM fragmentation is-
sue, and lowers NVMM write wear and persistence over-
head. To that end, we create four key optimizations to
tackle the performance challenge in tree-based address
mapping. Our experiments show that the log-structured
NVMM can outperform Mnemosyne and Mnmsyn-Undo
by 44.7% and 80.8% on average in terms of transaction
throughput. Our work reveals how a software tree struc-
ture can be optimized to a level that can efficiently serve
address mapping for NVMM load/store instructions.
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