
Programming for Non-Volatile Main Memory Is Hard
Jinglei Ren

Microsoft Research
jinren@microsoft.com

Qingda Hu
Tsinghua University

hqd13@mails.tsinghua.edu.cn

Samira Khan
University of Virginia

samirakhan@virginia.edu

Thomas Moscibroda
Microsoft Research

moscitho@microsoft.com

ABSTRACT
Using non-volatile memory as main memory (NVMM) can largely
improve the performance of applications, but adds to the challenge of
programming – it turns out to be very error-prone to write real-world
NVMM programs, especially with object-oriented programming.
This paper presents a field study of erroneous NVMM programs
written by programmers who are trained to use a general NVMM
programming interface. We performed the field study in a training
workshop of 30 participants. Our observations and derived best prac-
tices offer a reference for future NVMM programming techniques
design. Toward that end, we propose a taxonomy of latest NVMM
programming techniques and, accordingly, a set of paradigms that
can reduce the risk of NVMM-specific bugs. The paradigms incor-
porate a minimal NVMM library interface design and a new design
pattern inspired by the field study.

ACM Reference format:
Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. 2017. Pro-
gramming for Non-Volatile Main Memory Is Hard. In Proceedings of APSys

’17, Mumbai, India, September 2, 2017, 8 pages.
https://doi.org/10.1145/3124680.3124729

1 INTRODUCTION
Emerging non-volatile memory (e.g., 3D XPoint [11], PCM [15,
22], STT-RAM [2, 14], ReRAM [1]) is both persistent and byte-
addressable with access latency comparable to DRAM. Therefore, it
provides a unique opportunity to merge main memory and secondary
storage, and access persistent data directly with CPU load and store
instructions. Such non-volatile main memory (NVMM) improves
system performance and energy efficiency by granting direct and
fast access to persistent data [5, 12, 18, 25, 26, 28].

Numerous software and hardware mechanisms have been pro-
posed to manage data in NVMM [3, 5, 10, 13, 16, 17, 19, 21, 23, 25,
26, 29]. The main goal of the mechanisms is to protect consistent
data from being corrupted by a system crash, i.e., crash consistency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’17, September 2, 2017, Mumbai, India
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124729

Traditionally, such protection is realized by a filesystem or data-
base, but with NVMM, programmers have to use a programming
language or library to do so. As it turns out, however, the resulting
NVMM programming approach is very error-prone, especially with
object-oriented programming.

Most prior works focus on low-level mechanisms that protect
crash consistency of NVMM data. However, it is unclear how well
programmers can learn and adopt those allegedly easy-to-use protec-
tions in real world. Therefore, we carried out a field study to answer
the question. Particularly, 30 participants are trained in a workshop
to use a typical but simplified NVMM programming interface. Par-
ticipants are required to write code for a programming problem
during the workshop, and their code is collected for offline analysis.
The results show that it is prone to introduce subtle bugs in NVMM
programming: omitting necessary protection for NVMM data oper-
ations – referred to as lack of protection, and mixing volatile and
non-volatile data in protection – referred to as over-protection. Those
bugs can lead to data inconsistency issues in the case of a system
crash. Worse still, popular object-oriented programming exacerbates
the bug proneness because NVMM data operations are encapsulated
and segmented by classes.

Based on the observations from the workshop, we follow two
steps to build up a picture of future programmer-friendly NVMM
programming techniques. First, we examine existing NVMM data
protection mechanisms and their programming approaches. They are
classified into four categories according to the protection granular-
ity: access-level protection, code-block-level protection, object-level
protection, and program-level protection. This taxonomy makes a
base for further discussion of lack-of- and over-protection bugs.

Second, we propose programming paradigms for different cate-
gories of protection mechanisms so as to help programmers write
correct NVMM programs in real-world projects. Particularly, for
access-level protection, we design a new dichotomy design pattern
that enforces principles for NVM allocation and access through two
different roles of classes. For code-block-level protection where
persistent transactions are employed, we design a minimal program-
ming interface to shallow programmers’ learning curves and still
prevent typical bugs we observed. For object-level protection, we
compare the template approach adopted by Intel NVML [10] and the
compiler approach that adds new language features. Both approaches
are bug proof but have different advantages and disadvantages. For
program-level protection, although it avoids the bugs under discus-
sion, we articulate other programming constrains for properly using
this type of protection. These constrains are not fully expressed in
related papers.

1

https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1145/3124680.3124729

APSys ’17, September 2, 2017, Mumbai, India Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda

As far as we know, this is the first work to study the challenge
of programming applications over software/hardware NVMM sys-
tems. We contribute (1) observations from a training workshop for
NVMM programming, (2) a taxonomy of crash consistency pro-
tection mechanisms for NVMM, and (3) programming paradigms
to reduce NVMM-specific bugs, including a minimal transactional
interface design and a new design pattern. Furthermore, we open
source libptm, a prototype library with the proposed transactional
interface, at https://github.com/persper/libptm. This project aims to
use a one-page manual to articulate how to use the library, achieving
real ease of use (In contrast, Intel NVML [10] has tens of manual
pages). We expect our work to enable easier adoption of NVMM in
real-world applications in future.

In the rest of the paper, we motivate our work in §2, review
the workshop field study in §3, introduce the taxonomy in §4, and
describe programming paradigms in §5.

2 MOTIVATION
NVMM-based systems enable a significant performance and en-
ergy gain as they bypass the traditional heavyweight filesystems or
databases [5, 12, 18, 25, 26, 28]. In order to guarantee crash consis-
tency of updates to NVMM, prior works proposed various protection
mechanisms [3, 5, 10, 13, 16, 17, 19, 21, 23, 25, 26, 29]. Crash
consistency means that an update is atomically done on NVMM
data even if a system crash interrupts the update. From a program-
mer’s perspective, a key requirement of those mechanisms is that
the program has to specify all NVMM accesses, in order to trigger
proper protection. This is a unique requirement of programming for
NVMM. Failure to fulfill the requirement may cause data inconsis-
tency upon a system crash, leading to serious program errors and
malfunction.

Moreover, adoption of NVMM in real-world projects will in-
evitably encounter object-oriented programming (OOP). According
to the TIOBE index [24], mainstream OOP languages such as C++
easily take up a popularity share of over 50% in total. OOP com-
plicates the above requirement as NVMM allocations and accesses
become encapsulated and segmented. The inheritance and compo-
sition blur the placement of data, in either volatile or non-volatile
memory. This largely increases the risk of misuse of the protection
mechanisms.

In practice, how easy or hard is it for programmers to fulfill the
requirement? In what way do programmers fail the fulfillment? What
bugs give rise to such failure? To answer the questions in a real set-
ting, we organized a NVMM programming workshop and conducted
an in-depth field study of programmers using typical NVMM data
protection mechanisms. Through the study, we identified two types
of common bugs. To deal with the bugs, we classify NVMM data pro-
tection mechanisms and propose general programming paradigms
based on our observations from the field study.

3 FIELD STUDY
Error-prone programming threatens the potential application of
NVMM. In this section, we start with our NVMM programming
workshop, a field study to expose the problem behind the error-
proneness. Then, we analyze results of the field study and their
implications.

3.1 Workshop Organization
We organized a NVMM programming workshop which attracted
30 student interns of Microsoft Research from ten universities in
three countries to participate. They span from undergraduates to
PhD students, and all have solid background in programming. In the
two-hour workshop, we first introduced NVMM programming using
a simplified syntax, and then gave participants a programming task
(§3.2). Participants wrote the programs in paper and handed them in
for offline analysis.

For brevity, the simplified syntax covers two main activities in
NVMM programming, data allocation and access: (1) nv_new
is used to allocate data in NVMM, a counterpart of C++ new;
(2) __nv(variables ...){ statements; ... } is used
to annotate a block of code lines that access certain variables in
NVMM, and guarantee crash consistency of the variables as a whole.
The access syntax is similar to a durable and atomic transaction
(a.k.a. persistent transaction). Other trivial code such as NVMM
configuration, management, zeroing and naming is all left out.

The syntax is decoupled from any specific NVMM system imple-
mentation. For example, Intel NVML [10] requires calling pmemobj_
tx_add_range() on any NVMM data to modify, which is ab-
stracted by the __nv(...) annotation. No matter how a NVMM
system is constructed, allocations and accesses are inevitable and
essential. So, we trained participants with the focus on the inherent
NVMM programming methodology.

3.2 Problem and Insight
We present a use scenario to participants and ask them to write a
program using NVMM to realize the demanded functionality. To
precisely define the demand, we hand out a regular DRAM program
as an example of the expected program behavior. Therefore, the task
can also be interpreted as converting a DRAM program to NVMM
for persistence.

3.2.1 Code Example. The scenario is to write a persistent
counter of events. The example program is listed in Figure 1. A
class Counters is defined to count the events through its function

1 class Counters {
2 int *counts;
3 public:
4 Counters(int n) { counts = new int[n]; }
5 int Increase(int i) { return ++counts[i]; }
6 };
7 class TimedCounters : public Counters {
8 time_t timestamp;
9 public:

10 TimedCounters(int n) : Counters(n) {
11 time(×tamp); // get time now
12 }
13 time_t GetTime() { return timestamp; }
14 };
15 int main() {
16 TimedCounters tc(1);
17 cout << "Since " << tc.GetTime() << ": ";
18 cout << tc.Increase(0) << endl;
19 }

Figure 1: The C++ program used in our workshop. Participants’
task is to port it to NVMM.

2

https://github.com/persper/libptm

Programming for Non-Volatile Main Memory Is Hard APSys ’17, September 2, 2017, Mumbai, India

Increase(). It incorporates a widely used optimization for multi-
threading: an array of integers is created so that threads can be
statically assigned to different integers to avoid contention. Suppose
another developer reuses Counters and extends it by recording
since when the counts are calculated. Then, we expect Counters
to be inherited and extended with a timestamp, resulting in a new
class TimedCounters.

3.2.2 Bugs. Now we analyze two typical erroneous programs
written by participants. Using the above syntax, Figure 2 (a) shows a
plausible design to fulfill the task. Counters manages both alloca-
tion of the counts on NVMM (Line 5) and access to them (Line 8). It
follows the encapsulation principle of OOP [7]. In addition, to make
TimedCounters persistent, any instance of the class is allocated
in NVMM (Line 29) and all accesses are protected (Line 17).

Although the overall program seems to work, there is a tricky
bug in it. TimedCounters inherits the pointer counts from
Counters , and the pointer is finally allocated in NVMM by the
main function (Line 29). Therefore, access to the pointer should
be protected. However, assignment to the pointer in Counters
(Line 5) is not protected. This can leave the pointer wild on a crash,
because its value is not ensured to be persisted (e.g., it may still stay
in CPU caches instead of having been flushed to NVMM). We refer
to this type of bug as lack of protection.

Besides, Figure 2 (b) illustrates another type of bug, over-protection.
Counters is the same as in (a). TimedCounters realizes per-
sistence by directly putting the timestamp on NVMM. Since the
main function does not allocate the TimedCounters object in
NVMM, there is no lack-of-protection bug as in (a). However, the
NVMM protection at Line 17 would wrongly apply to the pointer
ptr_timestamp which is placed in DRAM. Such over-protection
brings about a performance penalty as it runs unnecessary NVMM
protection mechanisms, and threatens integrity of the mechanisms
by mixing unexpected DRAM data into them. More importantly,
this is a warning of problematic design and messy data placement.
Even though certain NVMM systems can automatically filter DRAM
accesses, such a warning should be avoided.

To identify those bugs, we have to go through multiple layers of
classes. Suppose Counters is from a third-party library. Readers
may wonder whether the usage of the superclass Counters is
safe or not. In theory, OOP promises to save our effort to know
every detail of class internals. But the introduction of NVMM tends
to invalid the promise. We can see that such segmented view due
to OOP complicates reasoning of NVMM programs. As a result,
mismatch of data placement (DRAM vs. NVMM) and protection
causes many bugs in NVMM programming.

In summary, lack of protection as shown in Figure 2 (a) and
over-protection as shown in Figure 2 (b) can cause inconsistency or
run-time errors. Applying OOP, a dominant programming paradigm,
aggravates the issue, because objects hide implementation details
while being open to extension [7]. OOP blurs where data members
of a class/object are ultimately placed (DRAM vs. NVMM) and how
they should be accessed.

3.3 Observations
After the workshop, we carefully examined all participants’ pro-
grams. Besides the above bug analysis, we draw three observations.

1 class Counters {
2 int *counts;
3 public:
4 Counters(int n) {
5 counts = nv_new int[n];
6 }
7 int Increase(int i) {
8 __nv (counts[i]) {
9 return ++counts[i];

10 }
11 }
12 };
13 class TimedCounters : public Counters {
14 time_t timestamp;
15 public:
16 TimedCounters(int n) : Counters(n) {
17 __nv (timestamp) {
18 time(×tamp); // get time now
19 }
20 }
21 time_t GetTime() {
22 __nv (timestamp) {
23 return timestamp;
24 }
25 }
26 };
27 int main() {
28 TimedCounters *tc =
29 nv_new TimedCounters(1);
30 cout << "Since " << tc->GetTime() << ": ";
31 cout << tc->Increase(0) << endl;
32 }

(a) Lack of protection at Line 5 on the condition that
tc is in NVMM as Line 29 indicates.

1 class Counters {
2 int *counts;
3 public:
4 Counters(int n) {
5 counts = nv_new int[n];
6 }
7 int Increase(int i) {
8 __nv (counts[i]) {
9 return ++counts[i];

10 }
11 }
12 };
13 class TimedCounters : public Counters {
14 time_t *ptr_timestamp; // a pointer
15 public:
16 TimedCounters(int n) : Counters(n) {
17 __nv (ptr_timestamp, *ptr_timestamp) {
18 ptr_timestamp = nv_new time_t;
19 time(ptr_timestamp); // get time now
20 }
21 }
22 time_t GetTime() {
23 __nv (*ptr_timestamp) {
24 return *ptr_timestamp;
25 }
26 }
27 };
28 int main() {
29 TimedCounters tc(1);
30 cout << "Since " << tc.GetTime() << ": ";
31 cout << tc.Increase(0) << endl;
32 }

(b) Over-protection at Line 17 on the condition that
tc is in DRAM as Line 29 indicates.

Figure 2: Problematic programs with two typical bugs.

3

APSys ’17, September 2, 2017, Mumbai, India Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda

First, ad hoc design for individual classes is more error-prone
than applying a general principle to all classes (principled design).
In the field study, out of 13 correct programs, only 1 program per-
sists Counters and TimedCounters in different ways. 87.5%
programs following the ad hoc design are buggy. In contrast, only
45.5% programs following the principled design have bugs.

Second, participants put NVMM allocations in various places
along the class hierarchy of the program, which drives different
program designs and contributes to problematic ones. Figure 3 (a)
shows the numbers of different allocation behaviors. 56.7% pro-
grams have NVM allocation in class definition; 20.0% have it in the
main function; and the rest 23.3% have it in both class definition and
the main function.

One concern is that the allocation behavior of the example DRAM
program may influence participants’ choice. To shield the influence,
we randomly hand out three versions of the DRAM program: Version
A allocates data by new in only one class (i.e., Figure 1); B does in
both classes; C does not do such allocation. Figure 3 shows compo-
sition of the three versions. We do not see remarkable influence of
different versions on participants’ results.

 0

 5

 10

 15

 20

Class Main Both

#
 P

a
rt

ic
ip

a
n

ts

Program Version A
Program Version B
Program Version C

(a) Placement of NVMM allocations.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Lack Over Correct

#
 P

a
rt

ic
ip

a
n

ts

Program Version A
Program Version B
Program Version C

(b) Bugs in matching NVMM accesses with allocations.

Figure 3: Results of the field study.

Third, the most challenging part of the problem is matching
NVMM access protection with the NVMM allocation behavior –
that confirms our insight and the focus of our work. Figure 3 (b)
depicts distributes of two types of the mismatch: “Lack” refers to
lack of protection; “Over” means over-protection; “Correct” is code
without those bugs.

The above three observations lead to a guideline towards bug-
proof NVMM programming: general principles have to be estab-
lished to stipulate NVMM allocation and protection behaviors, es-
pecially in class composition and inheritance.

4 TAXONOMY OF PROTECTION
Since NVMM programming bugs are mostly due to misuse of crash
consistency protection, a review of different protection mechanisms
is the first step to address the bugs. We summarize existing protection

mechanisms and classify them by the protection granularity, as
follows.

4.1 Access-Level Protection
This low-level approach fully exposes the requirement of NVMM
programming to programmers. That means a programmer has to
specify every NVMM access. In addition, to express the crash con-
sistency semantics (i.e., which updates constitute one atomic unit),
a number of updates can be grouped into a transaction. The syn-
tax __nv(variables ...){ statements; ... } used
in §3 is a generic example of this category, where variables...
specify all NVMM accesses in a transaction and {...} defines the
scope of the transaction. More concretely, Intel NVML [10] includes
a libpmemobj library to offer access-level protection.

4.2 Code-Block-Level Protection
To save programmers’ burden on annotating every NVMM access
and make it less error-prone, a compiler can help do the work by
automatically instrumenting CPU loads and stores within a trans-
action [8]. Mnemosyne [26] and log-structured NVMM [9], for
example, leverage this approach. A programmer only need to specify
a block of code as the transaction scope, and all memory accesses
within the scope automatically trigger callbacks to the underlying
NVMM system (note that DRAM accesses have to be filtered out).
If we follow the syntax in §3, this approach is like using __nv{
statements; ... } without the need to specify every NVMM
access.

4.3 Object-Level Protection
The above approaches focus on data operations. Another approach
is to specify objects to be persistent and automatically protect all
accesses to those objects. Intel NVML [10] supports this by C++
bindings. NVML utilizes a template p<> which overwrites, for
example, the assignment operator = so that all updates through
assignment trigger protection. The template can be applied to basic
data types (e.g., int) and a complex object can be made of basic
ones. Different from NVML, NVL-C [6] requires programmers to
specify non-volatile pointers and all referenced objects must be
placed in NVMM.

More advanced compiler techniques even help automate the pro-
cess of identifying persistent objects. NVMOVE [4] analyzes legacy
source code of an application and help programmers identify classes
that need to be persistent in NVMM if the code is ported to NVMM.

Another branch of work provides persistent data structures [25,
27], such as NV-tree. These data structures are internally protected,
and the protection is transparent to programmers who never modify
the data structures.

4.4 Program-Level Protection
This approach protects the whole program assuming that all ob-
jects locate in NVMM. Whole-system persistence (WSP) [19] and
ThyNVM [23] are two representatives of this category. They are
architecture designs to efficiently support persistence of the whole
memory space. WSP flushes volatile CPU states using residual en-
ergy on a power outage; ThyNVM frequently generates checkpoints
during execution time. They resume the program execution after a

4

Programming for Non-Volatile Main Memory Is Hard APSys ’17, September 2, 2017, Mumbai, India

crash to ensure data durability and consistency. Unlike other protec-
tion mechanisms which are destructive to legacy code, program-level
protection adds persistence to even traditional DRAM-oriented pro-
grams with few modifications, and transparently guarantees crash
consistency of NVMM data.

Choice of the protection level or granularity depends on the
requirements of the program or programmers. Low-level or fine-
grained protection mechanisms typically lead to high efficiency and
system performance, but impose heavy burdens on programmers
which may incur a high development cost. In contrast, high-level or
coarse-grained protection mechanism have the opposite properties.

Based on the knowledge of different protection mechanisms and
their taxonomy, we will describe several programming paradigms
to reduce bugs due to misuse of protection mechanisms as well as
other reasons.

5 PROGRAMMING PARADIGMS
The observations of our field study indicate the need for program-
ming paradigms that define patterns, interfaces or constrains in pro-
gramming. Different categories of protection mechanisms expect dif-
ferent programming paradigms. We address the main bug-inducing
aspect of each protection category, and propose a specific paradigm
accordingly. These paradigms are in various forms.

5.1 Design Pattern
The access-level protection offers the most flexibility of program-
ming among all four categories. However, programmers have to
directly deal with both bug types as discussed in §3. Our idea is
to form a design pattern to structure the classes in such a way that
placement of data and its access protection have a general principle

Connector<T>Connector<T>

pointer: T*

Connector<InnerD>Connector<InnerD>

<<bind>>

<T->InnerD>

<<bind>>

<T->InnerD>

InnerCInnerC

ptr_d: Connector<InnerD>

InnerBInnerB

InnerAInnerA

obj_b: InnerB

Creator<T>Creator<T>

+ (): T*

OuterOuter

<<bind>>

<T->InnerA>

<<bind>>

<T->InnerA>

InnerDInnerD

Creator<InnerA>Creator<InnerA>

Figure 4: Class diagrams of a dichotomy design pattern.

to follow. Note that this approach does not rely on any changes to the
compiler as required by code-block-level or object-level protection.

We divide classes around NVMM into two positions, inner and
outer. Inner classes manage NVMM data, and outer classes use the
managed data. This design pattern is named dichotomy because a
class of one position is only allowed to be extended by a class of
the same position. Such extension includes both inheritance and
composition. Moreover, an inner class references another inner class
by an instance of the predefined class InnerPtr. As for interaction
between inner and outer classes, it is realized by another predefined
class, Creator. Figure 4 presents an overview of the classes in the
dichotomy design pattern. We elaborate them as follows.

(1) Inner classes take the responsibility to protect accesses to
NVMM data. They can safely assume all their objects are ultimately
located in NVMM – this is an important assumption we maintain
to ease programming and reduce bugs. The principle is that inner
classes can only connect with other inner classes, by one of the
following two ways. First, regular composition or inheritance. For
example, in Figure 4, InnerA is composed of InnerB and inherits
InnerC. Second, an InnerPtr object, if one inner class holds
a persistent pointer to another inner class. For example, the buggy
Line 5 of Figure 2 (a) contains such a pointer. It should be replaced
by an InnerPtr object as defined in Figure 5 (a), which protects

1 template <class T>
2 class InnerPtr {
3 T *pointer;
4 public:
5 T *operator=(T *p) {
6 __nv(pointer) {
7 return pointer = p;
8 }
9 }

10 T *operator->() {
11 __nv(pointer) {
12 return pointer;
13 }
14 }
15 T &operator*() {
16 __nv(*pointer) {
17 return *pointer;
18 }
19 }
20 T &operator[](int i) {
21 __nv(pointer[i]) {
22 return pointer[i];
23 }
24 }
25 };

(a) InnerPtr protects pointer assignment.

1 template <class T>
2 class Creator {
3 public:
4 template <class... Types>
5 T *operator()(Types... args) {
6 return nv_new T(args...);
7 }
8 };

(b) Creator enforces allocation of an object in NVMM.

Figure 5: Sample implementation of InnerPtr and Creator.
T is a template to bind to any class or type; args are arbitrary
arguments to pass to nv_new.

5

APSys ’17, September 2, 2017, Mumbai, India Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda

assignment to the pointer and prevents the lack-of-protection bug.
In Figure 4, InnerC maintains a persistent pointer to InnerD by
holding an instance of InnerPtr bound to InnerD.

(2) Use of the inner classes is through Creator, which offers
an interface for outer classes to instantiate inner classes. Figure 5 (b)
shows a basic form of Creator. It ensures that the object of an
inner class is allocated in NVMM, but the pointer to the object is
not persistent (different from InnerPtr). In Figure 4, an instance
of InnerA is created by Creator. We regard C++ main function
as a special outer class.

Finally, we show in Figure 6 the correct NVMM program for
our field study, applying the dichotomy design pattern. We can
regard time_t, Counters and TimedCounters all as inner
classes, so composition or inheritance among them are allowed.
But a InnerPtr instance is required to reference counts that
is allocated in NVMM (Line 5). Then, the main function uses
TimedCounters, and instantiates it by a Creator object (Line 29).

1 class Counters {
2 InnerPtr<int> counts;
3 public:
4 Counters(int n) {
5 counts = nv_new int[n];
6 }
7 int Increase(int i) {
8 __nv (counts[i]) {
9 return ++counts[i];

10 }
11 }
12 };
13 class TimedCounters : public Counters {
14 time_t timestamp;
15 public:
16 TimedCounters(int n) : Counters(n) {
17 __nv (timestamp) {
18 time(×tamp); // get time now
19 }
20 }
21 time_t GetTime() {
22 __nv (timestamp) {
23 return timestamp;
24 }
25 }
26 };
27 int main() {
28 Creator<TimedCounters> tc_creator;
29 TimedCounters *tc = tc_creator(1);
30 cout << "Since " << tc->GetTime() << ": ";
31 cout << tc->Increase(0) << endl;
32 }

Figure 6: Correct program using the dichotomy design pattern.

Throughout this section, we keep to our simplified syntax to
demonstrate the essence of the design pattern. But in practice, certain
NVMM systems may involve additional operations, such as naming
objects in NVMM, or retrieving a native pointer from a persistent
pointer that contains extra metadata [5, 6, 10]. A favorable fact is that
most those operations can be done in InnerPtr and Creator,
hiding details from other classes.

Overall, the dichotomy design pattern for access-level protection
mechanisms manages to assign classes to two exclusive positions
and specify a coherent NVMM allocation and access principle ac-
cordingly. With the design pattern, programmers need not reason

about ad hoc allocation or access protection behaviors among classes.
Thus, our observations from the field study justify the effectiveness
of such a programming paradigm in practical use.

5.2 Minimal Transaction Interface
The code-block-level protection assumes that the compiler instru-
ments memory accesses and filters out those to volatile data. This
capability not only saves programmers’ effort spent in manually
annotating NVMM accesses, but also alleviates the over-protection
issue. DRAM accesses automatically bypass the NVMM data pro-
tection even if they are annotated. This is a convenient feature in
many cases and helps reduce the risk of writing problematic code.

While access-level-protection-based Intel NVML [10] entails tens
of pages of a tutorial to introduce all sorts of its APIs, we set up
a goal to design a minimal transaction API with code-block-level
protection. It is minimal in the sense that only one-page manual
is necessary to explain the usage of the interface. We specify the
interface here, and open source a library prototype that works with
the interface at https://github.com/persper/libptm. The full interface
of our library consists of three parts.

5.2.1 Allocation. NVMM data lives longer than processes. We
assume it is managed by the operating system as files. But for one
process, our library associates only a single data file with it. So,
programmers call popen(“data/file/path”), typically in
the beginning of the program, to get started.

To allocate and give back DRAM areas, traditional programs
call malloc / free in C or new / delete in C++. Our interface
provides their counterparts for NVMM, pmalloc / pfree and
pnew / pdelete, with similar semantics.

A key rationale that enables the simplicity of our interface is to
map the NVMM region into a fixed virtual address for a certain
process1 so that programs use native virtual addresses and pointers
to reference NVMM data. Consequently, a simple popen call is
enough to setup the mapping and all allocations return native virtual
addresses, with little change to the current programming convention.

5.2.2 Naming. Our interface provides a way to assign a unique
string ID to a NVMM data structure, so that the data is retrievable
after the process starts over. Such an ID is referred to as a seed. Sup-
pose a program stores a tree in NVMM, then the C++ code can go
like Figure 7. Usually only a very small number of seed IDs are nec-
essary, as most NVMM data is reachable from them. When you do
not want a seed ID any longer, call pderegister(“unique-id”).

5.2.3 Annotation. We use a similar syntax to that in §3 for
annotation. Figure 7 includes code snippets that show the way to
annotate code blocks (Line 7 and below). Note that there is no need
to manually annotate specific variables as the compiler does that
automatically.

5.3 Beyond Bugs
Both object-level and program-level protection mechanisms inher-
ently follow the guideline we derived from the field study observa-
tions (§3). Both categories of protection mechanisms are principled

1The current Linux kernel cannot guarantee this, but support of such a feature is viable
considering the huge 64-bit address space. Our current library implements a best-effort
mmap and can succeed in most cases.

6

https://github.com/persper/libptm

Programming for Non-Volatile Main Memory Is Hard APSys ’17, September 2, 2017, Mumbai, India

1 Tree *tree = (Tree *)pretrieve("unique-id");
2 if (!tree) { // In case it is not created yet
3 tree = pnew(Tree); // Create the tree
4 pregister("unique-id", tree); // Give a name
5 }
6 // ... Hereafter use the tree as usual
7 __nv {
8 tree->insert(value);
9 }

Figure 7: Example C++ program using our interface. When the
process starts up for the first time, a persistent tree is created
and registered; otherwise, the persistent tree is retrieved as a
valid address is returned.

in NVMM allocation and access, so they are defensive to lack-of-
and over-protection bugs. However, they incur other constrains in
programming. We discuss such guideline satisfaction and constrains
to characterize the resulting programming paradigms.

5.3.1 Protection Bug Proof. Most object-level protection mech-
anisms incorporate internal control of NVMM access, so program-
mers only need to specify which objects to store in NVMM. Proper
access protection is automatically added, and the program is cor-
rect as long as all necessary objects are made persistent. Other
object-level protection with inference ability even does not bother
programmers to choose (most) persistent objects.

Similarly, the program-level protection is software-transparent,
so programmers even have no chance to make protection bugs. How-
ever, such a bug-proof feature of the two high levels of protection is
not without a price.

5.3.2 Constrains. The internally-protected persistent data struc-
tures only open up predefined interfaces to programmers and are not
composable. For example, multiple operations on such data struc-
tures cannot combine into one transaction. This largely limits their
application and usability. Some compilers use reachability from
known persistent objects to decide persistence of other objects. This
method may enlarge the persistence scope and cover unintended
objects. Both false positive and false negative cases are encountered
in such source code analysis tools [4].

The program-level protection mechanisms have two constrains.
First, they typically manage only memory data but hardly preserve
the states of network cards and other devices. That means the re-
sumed program may encounter I/O errors. To ensure crash consis-
tency despite of such errors, programmers have to carefully test
error/exception handling paths so that the persistent data remains in
a correct state when the execution falls into those rare paths.

Second, the resumed program may diverge from what have actu-
ally happened, due to indeterminism introduced by concurrency. As
long as it does not resume from an instant immediately before the
crash, the programs has to ensure that concerned NVMM writes are
deterministic or that the indeterminism is benign. One benign case is
when writes to disjoint areas can be reordered. Another benign case
is to have no user-perceived effects on the program behavior. The
program can implement such a logic that user requests are acknowl-
edged only after persistence of NVMM data is ensured (e.g., by

waiting until a NVMM checkpoint has been made). This approach
follows the external synchrony model [20].

6 CONCLUSION
This paper reports our experiences and observations in a NVMM
programming workshop, which acts as a field study of programmers
writing code for NVMM. We find two types of NVMM-specific
bugs, factors contributing to the bugs, and a guideline to avoid them.
Furthermore, we define a four-class taxonomy of existing NVMM
programming techniques that protect NVMM data at different levels.
We share our thoughts on recommended programming paradigms
for every class. Among them, the dichotomy design pattern and the
minimal NVMM library interface are useful to both future NVMM
programmers and NVMM programming technique developers.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Xiaofei Liao,
for their valuable feedback. This work was partially supported by the
National Natural Science Foundation of China (Grant No. 61502266,
61433008, 61232003), the Beijing Municipal Science and Technol-
ogy Commission of China (Grant No. D151100000815003), and
the China Postdoctoral Science Foundation (Grant No. 2016T90094,
2015M580098).

REFERENCES
[1] H. Akinaga and H. Shima. 2010. Resistive Random Access Memory (ReRAM)

Based on Metal Oxides. Proc. IEEE 98, 12 (2010). https://doi.org/10.1109/
JPROC.2010.2070830

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti
Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexan-
der Driskill-Smith, and Mohamad Krounbi. 2013. Spin-transfer Torque Magnetic
Random Access Memory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst.
9, 2, Article 13 (May 2013), 35 pages. https://doi.org/10.1145/2463585.2463589

[3] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND:
Recovery Write-ahead System for In-memory Non-volatile Data-structures. Proc.
VLDB Endow. 8, 5 (Jan. 2015), 497–508. https://doi.org/10.14778/2735479.
2735483

[4] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza, Onur Mutlu,
and Pratap Subrahmanyam. 2016. NVMOVE: Helping Programmers Move to
Byte-Based Persistence. In 4th Workshop on Interactions of NVM/Flash with
Operating Systems and Workloads (INFLOW ’16). Savannah, GA. https://www.
usenix.org/conference/inflow16/workshop-program/presentation/chauhan

[5] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). 105–118. https://doi.org/10.
1145/1950365.1950380

[6] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. 2016. NVL-C: Static Analysis
Techniques for Efficient, Correct Programming of Non-Volatile Main Memory
Systems. In Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’16). 125–136. https:
//doi.org/10.1145/2907294.2907303

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional.

[8] GCC. 2017. GNU libitm. https://gcc.gnu.org/onlinedocs/libitm/. (2017).
[9] Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas Moscibroda. 2017. Log-

Structured Non-Volatile Main Memory. In Proceedings of 2017 USENIX Annual
Technical Conference (USENIX ATC ’17). Santa Clara, CA. http://jinglei.ren.
systems/files/lsnvmm_slides_atc17.pptx

[10] Intel. 2016. The NVM Library. http://pmem.io/. (2016).
[11] Intel and Micron. 2017. 3D XPoint Technology. https://www.micron.com/about/

our-innovation/3d-xpoint-technology. (2017).
[12] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip

Won. 2016. NVWAL: Exploiting NVRAM in Write-Ahead Logging. In Pro-
ceedings of the Twenty-First International Conference on Architectural Support

7

https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/2463585.2463589
https://doi.org/10.14778/2735479.2735483
https://doi.org/10.14778/2735479.2735483
https://www.usenix.org/conference/inflow16/workshop-program/presentation/chauhan
https://www.usenix.org/conference/inflow16/workshop-program/presentation/chauhan
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/2907294.2907303
https://doi.org/10.1145/2907294.2907303
https://gcc.gnu.org/onlinedocs/libitm/
http://jinglei.ren.systems/files/lsnvmm_slides_atc17.pptx
http://jinglei.ren.systems/files/lsnvmm_slides_atc17.pptx
http://pmem.io/
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://www.micron.com/about/our-innovation/3d-xpoint-technology

APSys ’17, September 2, 2017, Mumbai, India Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda

for Programming Languages and Operating Systems (ASPLOS ’16). 385–398.
https://doi.org/10.1145/2872362.2872392

[13] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceed-
ings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16). 399–411.
https://doi.org/10.1145/2872362.2872381

[14] E. KÃijltÃijrsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evalu-
ating STT-RAM as an energy-efficient main memory alternative. In Proceeding of
the 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS ’13). 256–267. https://doi.org/10.1109/ISPASS.2013.6557176

[15] B.C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, E. Ipek, O. Mutlu, and D.
Burger. 2010. Phase-Change Technology and the Future of Main Memory. IEEE
Micro 30 (Jan. 2010), 131–141. https://doi.org/10.1109/MM.2010.24

[16] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and
Jinglei Ren. 2017. DudeTM: Building Durable Transactions with Decoupling for
Persistent Memory. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’17). 329–343. https://doi.org/10.1145/3037697.3037714

[17] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-
Yuan Michael Wang. 2014. NVM Duet: Unified Working Memory and Per-
sistent Store Architecture. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’14). 455–470. https://doi.org/10.1145/2541940.2541957

[18] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy
Ranganathan, and Nathan Binkert. 2013. Consistent, Durable, and Safe Memory
Management for Byte-addressable Non Volatile Main Memory. In Proceedings
of the First ACM SIGOPS Conference on Timely Results in Operating Systems
(TRIOS ’13). Article 1, 17 pages. https://doi.org/10.1145/2524211.2524216

[19] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence. In
Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVII). 401–410.
https://doi.org/10.1145/2150976.2151018

[20] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.
2006. Rethink the Sync. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06). 1–14. http://dl.acm.org/citation.
cfm?id=1298455.1298457

[21] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency.
In Proceeding of the 41st Annual International Symposium on Computer Archite-
cuture (ISCA ’14). 265–276. http://dl.acm.org/citation.cfm?id=2665671.2665712

[22] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M.
Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam. 2008. Phase-change
Random Access Memory: A Scalable Technology. IBM J. Res. Dev. 52, 4 (July
2008), 465–479. https://doi.org/10.1147/rd.524.0465

[23] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur
Mutlu. 2015. ThyNVM: Enabling Software-transparent Crash Consistency in
Persistent Memory Systems. In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-48). 672–685. http:
//persper.com/thynvm/.

[24] TIOBE software BV. 2017. TIOBE Programming Community index. http://www.
tiobe.com/tiobe-index/. (2017).

[25] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies (FAST ’11). 61–75. http://dl.acm.org/citation.cfm?id=
1960475.1960480

[26] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVI). 91–104. https://doi.org/10.1145/1950365.1950379

[27] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based
Single Level Systems. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST ’15). 167–181. http://dl.acm.org/citation.cfm?
id=2750482.2750495

[28] Y. Zhang and S. Swanson. 2015. A study of application performance with non-
volatile main memory. In Proceedings of the 31st Symposium on Mass Storage
Systems and Technologies (MSST ’15). 1–10. https://doi.org/10.1109/MSST.2015.
7208275

[29] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi.
2013. Kiln: Closing the Performance Gap Between Systems with and With-
out Persistence Support. In Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-46). 421–432. https:
//doi.org/10.1145/2540708.2540744

8

https://doi.org/10.1145/2872362.2872392
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1109/ISPASS.2013.6557176
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/2541940.2541957
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1145/2150976.2151018
http://dl.acm.org/citation.cfm?id=1298455.1298457
http://dl.acm.org/citation.cfm?id=1298455.1298457
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1147/rd.524.0465
http://persper.com/thynvm/
http://persper.com/thynvm/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://doi.org/10.1145/1950365.1950379
http://dl.acm.org/citation.cfm?id=2750482.2750495
http://dl.acm.org/citation.cfm?id=2750482.2750495
https://doi.org/10.1109/MSST.2015.7208275
https://doi.org/10.1109/MSST.2015.7208275
https://doi.org/10.1145/2540708.2540744
https://doi.org/10.1145/2540708.2540744

	Abstract
	1 Introduction
	2 Motivation
	3 Field Study
	3.1 Workshop Organization
	3.2 Problem and Insight
	3.3 Observations

	4 Taxonomy of Protection
	4.1 Access-Level Protection
	4.2 Code-Block-Level Protection
	4.3 Object-Level Protection
	4.4 Program-Level Protection

	5 Programming Paradigms
	5.1 Design Pattern
	5.2 Minimal Transaction Interface
	5.3 Beyond Bugs

	6 Conclusion
	References

